NATIVE INSSES

Contents

What is it and what can it do?

When should or shouldn’t you use it?
Basic JNI application overview

The 4-steps to JNI application happiness
Some JNI specifics

— Naming and typing

— Some helper functionality

Calling Java code from native code

JNI isn’t difficult to use...
...and it doesn’t have to be complicated!

But it can be a very powerful and useful
tool...

...when used correctly

But wait, there’s more!
1) | J
UYL

* Demos

* Further reading

What is JNI? So what can JNI do?

Standard part of Java » Execute native code from within Java
Allows you to integrate native code — Call native methods

(written in, say, C) into Java applications » Execute Java code from within native code
Can also be used to embed a JVM into a — Catch & throw exceptions

native application — Call methods

Provides a standard means of interaction — Use objects
between Java code and native code * Embed the JVM in native application (via
the Invocation API)

Why use JNI? Why not use JNI?

Direct hardware access / support * “The system absolutely has to be written in

Reuse existing libraries Javal”

Time-critical code / operations » Using a platform-dependant library makes
your application (more) platform-
dependant

» Codebase becomes more complicated
— More opportunity for memory leaks, etc.

Better support for something in another
language...

Theoretical complexity...

COMBUSTION CHAMBER
COMPHREES0DR TURBINE

FLIEL BUAMER JET PIPE AND
AR INTAKE PROPELLING NOZZLE

A basic JNI application

» JNI provides the link between the application
and some native code

* Also allows the native code to access the JVM
(and thus the application)

Real-world Complexity...

Creating a JNI application

. Decide what functionality needs to be in

native code

. Write & compile Java wrapper class
. Create native (C / C++) header using

Javah

. Import header into new DLL and

populate functions

1. Design 2. Create Java wrapper class

Try to keep native code to a minimum * Normal Java class, plus:

Avoid passing platform-dependant stuff (if -native methods
possible) - static block that loads the native library via

el . : r Il il 1
Clearly divided functionality (one function a CalMgSYStem. ToaSi ol

per action) » Native methods have no implementation
(like abstract methods)

Might need several native libraries .
+ Compile class as normal

3. Generate native header 4. \Write native code

Use javah, which comes with the JDK: * Import header

javah —jni <wrapper class name> * Each native method in the wrapper class
for example, should have a munged equivalent

Javah —jni MyPkg.MyWrapper * Implement the functions

Note package name (if used) must be —The JNIEnv object can be used to access
specified! various helpful bits of the JNI

This produces <wrapper class name>.h — Other parameters are converted to “C” types

UL

4a. Native compiler setup

* Need to add JNI headers to include path:
—<java install>\include AND
—<java install>\include\<platform>
* For example:
— C:\jdk1.5 .0, M5 Snciais
- C:\Jjdkl.5.0 15\inclucSumns

JNI name munging The JNI Environment object

» Native function name is created from: « JNIEnv object used to access JNI
— The prefix Java_ functionality
— Mangled fully-qualified class name Passed as first two parameters to all
— A separator (“_") native functions
— Mangled method name Examples of use:
— For overloaded native methods, two — Retrieving array elements

underscores followed by the mangled
argument signature

* May overload non-native methods

— Getting strings
— Accessing Invocation API
See chapters 4 and 5 of spec

Playing ‘hunt the library’ String operations

* The argument passed to » Java uses UTF — need to convert strings
System. loadLibrary is converted to — GetStringUTFChars

platform naming convention, for example: _ MUST ReleaseStringUTFChars

R 1112 « Can also create new java.lang.Strings,

— libMyLib.so for Solaris get region encoding, etc
 The library must be somewhere the JVM - &

can find it » Any created object (or other allocated
_ System search path memory) must be freed when you’re done
— Usually in the same directory as the with it!

bl]

licati y
application jUf

bl

String helper functions Array operations

Lyt 1 bl F gt 111

PR PR P TR R G Lrds b s B UL TR B P

El s A ot et 5 VRS Ty i * Primitive arrays vs. Object arrays

oo nEradhd | KF 3 hajee) -h:rcmnurmm H . wgw 4
LA AR T ¢ Primitives:
- MG L Sk b - - Eanrex oW efskInebonisharrdz 1 IhD ST s e

SRR U 2 I ey Vi i Tt bany — GetXXXArrayRegion

T2l ettt [47 i Ll 1o zurzsznes

1HH I AR =3k AL .h..}l TTRIE TN TOCLTORIHT ek K GetXXXArrayElements,
“w gm0 E CELL BT L 2T ReleaseXXXArrayElements

LRl (LRl el Fs o ot T TV ONE, Uil st o GECR TR BT IR A P T B R E I
|mam-h:1utr¢ men] Loacesmd e s urmm si=un TR kv i

e oy * Objects:

'ITJ:.‘P‘JE'? :':qulzn:a:c:;r :| :Im [PRI PR UJI';IH I:;-“:r_: .Lu ::Iu - NewObj ectArray
i 1

it d
rak e o itk AT I T et - prir

- Get / SetObjectArrayElement
— FindClass

M At = o | G- he 1o - lETRERCAMRAT T © Rrca lZiobiesThe <ond
SR hmm nRe i an bz the R | B A sulerie e L

T 3denphwin TR T 2 2] e thaleores - LEEMEIR R IR - L1 Gan b Hicfime
B Fh S AN LE L s n oW LTFF arnfRer S nqliTRRe 1 sn nTe L L

Type signatures Calling Java code from JNI

Uses JVM type signature representation » Create Java wrapper class and native

Single letters for primitive types, or fully hea.der as above
qualified class names * Native code needs to know class, method

name, and method signature of Java code
(arg-types) ret-type for a method it wants to call

€.0. long foo M THERE, S . JNIEnv->GetMethodID and
gives (ILjava/lang/String;)J JNIEnv->CallXXXMethod

« JNIEnv->GetStaticMethodID and
JNIEnv->CallStaticXXxMethod

Accessing fields of objects

Basically the same as calling Java
methods:

GetFieldID ()
GetXxXXField () and setxXXField ()

Need an instantiated class, field name and
signature

Can’t be used to get length of array — use
GetArrayLength ()

Gotchas Recommended reading

Package name when creating native * JNI Specification (Java 5):
headers

Memory leaks when working with strings
Multiple instances of the same library
System.load VS System. loadLibrary

e Sun JNI tutorial:

» Java Native Interface: Programmer’s
Guide and Specification:

LHOTGHA

